Here the vectors $\mathbf{a} = \langle \mathbf{1} - 0, 0 - \mathbf{1}, \mathbf{1} - \mathbf{1} \rangle = \langle \mathbf{1}, -\mathbf{1}, 0 \rangle$ and $\mathbf{b} = \langle \mathbf{1} - 0, \mathbf{1} - \mathbf{1}, 0 - \mathbf{1} \rangle = \langle \mathbf{1}, 0, -\mathbf{1} \rangle$ lie in the plane, so $\mathbf{a} \times \mathbf{b}$ is a normal vector to the plane. Thus, we can take $\mathbf{n} = \mathbf{a} \times \mathbf{b} = \langle \mathbf{1} - 0, 0 + \mathbf{1}, 0 + \mathbf{1} \rangle = \langle \mathbf{1}, \mathbf{1}, \mathbf{1} \rangle$. If P_0 is the point $(0, \mathbf{1}, \mathbf{1})$, an equation of the plane is $\mathbf{1}(x - 0) + \mathbf{1}(y - \mathbf{1}) + \mathbf{1}(z - \mathbf{1}) = 0$ or x + y + z = 2.