$\partial (ye^x + \sin y)/\partial y = e^x + \cos y = \partial (e^x + x\cos y)/\partial x$ and the domain of **F** is \mathbb{R}^2 . Hence **F** is conservative so there

exists a function f such that $\nabla f = \mathbf{F}$. Then $f_x(x,y) = ye^x + \sin y$ implies $f(x,y) = ye^x + x \sin y + g(y)$ and $f_y(x,y) = e^x + x \cos y + g'(y)$. But $f_y(x,y) = e^x + x \cos y$ so g(y) = K and $f(x,y) = ye^x + x \sin y + K$ is a potential function for \mathbf{F} .