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In the last step, note that we decreased the initial value of the summa-
tion variable n by 1 , and then increased each occurrence of n in the
term by 1 [also note that (−1)n+2 = (−1)n ].
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(c) f(x) =
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(2 + x)3
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·
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To write the power series with xn rather than xn+2, we will decrease

each occurrence of n in the term by 2 and increase the initial value

of the summation variable by 2. This gives us
1
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∞
∑

n=2

(−1)n(n)(n −

1)xn/2n+1 with R = 2.


