We know that the cross product of two vectors is orthogonal to both. So we calculate

i 1 6	j 1 0	k 1 1	$ \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix} $	$\begin{array}{c c}1\\1\end{array}$	$\mathbf{i} - \begin{vmatrix} 1\\ 6 \end{vmatrix}$	$\begin{array}{c}1\\1\end{array}$ j +	$\begin{vmatrix} 1\\ 6 \end{vmatrix}$	1 0	$\left \mathbf{k} = \mathbf{i} + 5\mathbf{j} - 6\mathbf{k} \right $
--------------------	--------------------	--------------------	---	-------------------------------------	--	--	---------------------------------------	--------	--

Thus, two unit vectors orthogonal to both are $\pm \frac{1}{\sqrt{62}} \langle 1, 5, -6 \rangle$, that is, $\left\langle \frac{1}{\sqrt{62}}, \frac{5}{\sqrt{62}}, -\frac{6}{\sqrt{62}} \right\rangle$ and $\left\langle -\frac{1}{\sqrt{62}}, -\frac{5}{\sqrt{62}}, \frac{6}{\sqrt{62}} \right\rangle$.