If p > -2, $\frac{1}{(n+1)^{p+2}} \le \frac{1}{n^{p+2}} (\{1/n^{p+2}\})$ is decreasing) and $\lim_{n \to \infty} \frac{1}{n^{p+2}} = 0$, so the series converges by the Alternating Series Test. If $p \le -2$, $\lim_{n \to \infty} \frac{(-1)^{n-1}}{n^{p+2}}$ does not exist, so the series diverges by the Test for Divergence. Thus, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p+2}}$ converges $\Leftrightarrow p > -2$.