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By the Ratio Test, the series
∞
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converges when

|x − 6| < 1 [R = 1] ⇔ −1 < x−6 < 1 ⇔ 5 < x < 7 . When x = 5,
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diverges by limit comparison with the harmonic series

(or by the Integral Test); when x = 7, the series
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by the Alternating Series Test. Thus, the interval of convergence is I = (5, 7].


