- (a) $f(3,0) = 3^2 e^{4(3)(0)} = 9(1) = 9$
- (b) Since both x^2 and the exponential function are defined everywhere, $x^2 e^{4xy}$ is defined for all choices of values for x and y. Thus the domain of f is $\mathbb{R} \times \mathbb{R}$.
- (c) Because the range of g(x, y) = 4xy is \mathbb{R} , and the range of e^x is $(0, \infty)$, the range of $e^{g(x,y)} = e^{4xy}$ is $(0, \infty)$. The range of x^2 is $[0, \infty)$, so the range of the product $x^2 e^{4xy}$ is $[0, \infty)$.