$f(x,y) = 4x^2 + 4y^2$, g(x,y) = xy = 1, and $\nabla f = \lambda \nabla g \Rightarrow \langle 8x, 8y \rangle = \langle \lambda y, \lambda x \rangle$, so $8x = \lambda y$, $8y = \lambda x$, and xy = 1. From the last equation, $x \neq 0$ and $y \neq 0$, so $8x = \lambda y \Rightarrow \lambda = 8x/y$. Substituting, we have $8y = (8x/y)x \Rightarrow y^2 = x^2 \Rightarrow y = \pm x$. But xy = 1, so $x = y = \pm 1$ and the possible points for the extreme values of f are (1, 1) and (-1, -1). Here there is no maximum value, since the constraint xy = 1 allows x or y to become arbitrarily large, and hence $f(x, y) = 4x^2 + 4y^2$ can be made arbitrarily large. The minimum value is f(1, 1) = f(-1, -1) = 8.