For
$$x>0$$
, $\frac{15x}{x^3+1}<\frac{15x}{x^3}=\frac{15}{x^2}$.
$$\int_1^\infty \frac{15}{x^2}\,dx \text{ is convergent by }\dagger \text{ with } p=2>1,$$
 so $\int_1^\infty \frac{15x}{x^3+1}\,dx \text{ is convergent by the Comparison Theorem.}$
$$\int_0^1 \frac{15x}{x^3+1}\,dx \text{ is a constant, so } \int_0^\infty \frac{15x}{x^3+1}\,dx = \int_0^1 \frac{15x}{x^3+1}\,dx + \int_1^\infty \frac{15x}{x^3+1}\,dx \text{ is also convergent.}$$

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 is convergent if $p > 1$ and divergent if $p \le 1$.