Maximize $f(x, y) = \frac{xy}{3} (5 - x - 2y)$, then the maximum volume is V = xyz. $f_x = \frac{1}{3}(5y - 2xy - y^2) = \frac{1}{3}y(5 - 2x - 2y)$ and $f_y = \frac{1}{3}x(5 - x - 4y)$. Setting $f_x = 0$ and $f_y = 0$ gives the critical point $(\frac{5}{3}, \frac{5}{6})$ which geometrically must yield a maximum. Thus the volume of the largest such box is $V = (\frac{5}{3})(\frac{5}{6})(\frac{5}{9}) = \frac{125}{162}$.