$f(x)=xe^{-8x}$ is continuous and positive on $[1,\infty)$. $f'(x)=-8xe^{-8x}+e^{-8x}=e^{-8x}(1-8x)<0$ for $x>\frac{1}{8},$ so f is decreasing on $[1,\infty)$. Thus, the Integral Test applies.

$$\int_{1}^{\infty} x e^{-8x} dx = \lim_{b \to \infty} \int_{1}^{b} x e^{-8x} dx = \lim_{b \to \infty} \left[-\frac{1}{8} x e^{-8x} - \frac{1}{64} e^{-8x} \right]_{1}^{b} \text{ [by parts]}$$
$$= \lim_{b \to \infty} \left[-\frac{1}{8} b e^{-8b} - \frac{1}{64} e^{-8b} + \frac{1}{8} e^{-8} + \frac{1}{64} e^{-8} \right] = \frac{9}{64e^8}$$

since $\lim_{b\to\infty} \frac{1}{8}be^{-8b} = \lim_{b\to\infty} \left(\frac{b}{8e^{8b}}\right) \stackrel{\text{H}}{=} \lim_{b\to\infty} \left(\frac{1}{64e^{8b}}\right) = 0$ and $\lim_{b\to\infty} e^{-8b} = 0$. Thus, $\sum_{n=1}^{\infty} ne^{-8n}$ converges.